Search results for "forced mean curvature flow"
showing 2 items of 2 documents
Stationary sets of the mean curvature flow with a forcing term
2020
We consider the flat flow approach for the mean curvature equation with forcing in an Euclidean space $\mathbb R^n$ of dimension at least 2. Our main results states that tangential balls in $\mathbb R^n$ under any flat flow with a bounded forcing term will experience fattening, which generalizes the result by Fusco, Julin and Morini from the planar case to higher dimensions. Then, as in the planar case, we are able to characterize stationary sets in $\mathbb R^n$ for a constant forcing term as finite unions of equisized balls with mutually positive distance.
Stationary sets and asymptotic behavior of the mean curvature flow with forcing in the plane
2020
We consider the flat flow solutions of the mean curvature equation with a forcing term in the plane. We prove that for every constant forcing term the stationary sets are given by a finite union of disks with equal radii and disjoint closures. On the other hand for every bounded forcing term tangent disks are never stationary. Finally in the case of an asymptotically constant forcing term we show that the only possible long time limit sets are given by disjoint unions of disks with equal radii and possibly tangent. peerReviewed